Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[bis(triphenylphosphine)silver(I)]- μ -6-aminonaphthalene-1-sulfonato- $\kappa^2 O:N$] monohydrate]

Hua Wu,^{a,b} Ying-Ying Liu^a* and Hong-Ye Bai^a

^aDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China, and ^bSchool of Heilongjiang Agricultural College of Vocational Technology, Jiamusi 154007, People's Republic of China Correspondence e-mail: liuyy21@yahoo.com.cn

Received 25 October 2007; accepted 8 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.040; wR factor = 0.108; data-to-parameter ratio = 16.5.

In the title compound, $\{[Ag(C_{10}H_8NO_3S)(C_{18}H_{15}P)_2]\cdot H_2O\}_n$, each Ag^I cation is four coordinated by two P atoms from two different triphenylphosphine ligands, and by one N atom and one sulfonate O atom from different 6-aminonaphthalene-1sulfonate anions in a distorted tetrahedral geometry. Each 6aminonaphthalene-1-sulfonate ligand bridges two Ag^I centers, resulting in the formation of polymeric chains parallel to the *a* axis. Intermolecular O-H···O and N-H···O hydrogen bonds contribute to the crystal packing stability. One phenyl ring is disordered over two positions; the site occupancies are 0.68 and 0.32.

Related literature

For related literature, see: Wang et al. (2007).

Experimental

Crystal data

```
\begin{bmatrix} Ag(C_{10}H_8NO_3S)(C_{18}H_{15}P)_2 \end{bmatrix} \cdot H_2O \\ M_r = 872.66 \\ \text{Triclinic, } P\overline{1} \\ a = 10.017 (2) \text{ Å} \\ b = 13.696 (3) \text{ Å} \\ c = 16.792 (3) \text{ Å} \\ \alpha = 69.84 (3)^{\circ} \\ \beta = 81.37 (3)^{\circ} \end{bmatrix}
```

```
\gamma = 69.09 (3)^{\circ}

V = 2019.1 (9) \text{ Å}^3

Z = 2

Mo K\alpha radiation

\mu = 0.68 \text{ mm}^{-1}

T = 293 (2) \text{ K}

0.29 \times 0.24 \times 0.19 \text{ mm}
```

metal-organic compounds

Data collection

```
Rigaku RAXIS-RAPID
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{\rm min} = 0.823, T_{\rm max} = 0.886
```

Refinement

545 parameters 5 restraints

 $R[F^2 > 2\sigma(F^2)] = 0.040$ H atcomposition

 $wR(F^2) = 0.108$ ind

 S = 0.91 refi

 8991 reflections
 $\Delta\rho_{max}$

9249 measured reflections 8991 independent reflections 5525 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.006$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\min} = -0.71 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ag1-P1	2.4598 (13)	Ag1-O1	2.478 (3)
Ag1-N1 ⁱ	2.460 (3)	Ag1-P2	2.4837 (14)
$P1 - Ag1 - N1^{i}$	117.56 (9)	$P1-Ag1-P2$ $N1^{i}-Ag1-P2$ $O1-Ag1-P2$	123.55 (5)
P1 - Ag1 - O1	105.72 (7)		103.02 (9)
$V1^{i} - Ag1 - O1$	90.32 (10)		111.83 (8)

Symmetry code: (i) x - 1, y, z.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W-H1C\cdots O2$ N1-H1 $B\cdots O2^{ii}$	0.92(6) 0.87(4)	1.88(3) 2.31(2)	2.789 (5) 3.140 (4)	166 (8) 162 (4)
$N1-H1A\cdots O3^{iii}$	0.85 (4)	2.17 (2)	2.975 (4)	159 (4)

Symmetry codes: (ii) x + 1, y, z; (iii) -x + 2, -y + 1, -z + 1.

Data collection: *PROCESS-AUTO* (Rigaku Corporation, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXL97*.

We thank the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20070314) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2332).

References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, X.-Y., Ma, C.-H., Gao, Q.-Q., Lu, S.-Q. & Dong, X.-W. (2007). Acta Cryst. E63, m2361.

Acta Cryst. (2007). E63, m3027 [doi:10.1107/S1600536807057121]

catena-Poly[[[bis(triphenylphosphine)silver(I)]- μ -6-aminonaphthalene-1-sulfonato- $\kappa^2 O:N$] mono-hydrate]

H. Wu, Y.-Y. Liu and H.-Y. Bai

Comment

In the title compound, (I), each Ag^I cation is four-coordinated by two P atoms from two triphenylphosphine ligands, one N atom and one O atom from the different 6-aminonaphthalene-1-sulfonate anions (Fig. 1). The Ag—O (sulfonate) distance in (I) is similar to the equivalent value in a related compound (Wang *et al.*, 2007).

There are two intermolecular N—H···O hydrogen bonds involving the amino N atom and two sulfonate O atoms among the adjacent 6-aminonaphthalene-1-sulfonate anions (Table 1), and the whole structure displays a double chain supramolecular framework, The lattice water molecule connects the units *via* hydrogen bond (Fig. 2).

Experimental

An aqueous solution (10 ml) of 6-aminonaphthalene-1-sulfonic acid (0.1115 g, 0.5 mmol) was added to solid Ag_2CO_3 (0.069 g, 0.25 mmol) and stirred for several minutes until no further CO_2 was given off; triphenylphosphine (0.113 g, 0.5 mmol) in acetonitrile (10 ml) was then added and a white precipitate formed. The precipitate was dissolved by dropwise addition of an aqueous solution of NH₃ (14 *M*). Colourless blocks of (I) were obtained by evaporation of the solution for several days at room temperature.

Refinement

C-bound H-atoms were geometrically positioned (C—H 0.93 Å) and refined using a riding model, with $U_{iso} = 1.2U_{eq}$ (C). The H atoms of the amino group and water molecule were located in a difference map and refined freely, with $U_{iso}(H) = 1.2U_{eq}$ (N, O). One phenyl ring in triphenylphosphine ligand was treated as disordered between two orientations with the refined occupancies of 0.677 (15) and 0.323 (15), respectively.

Figures

Fig. 1. A portion of the polymeric chain in (I), showing the 30% probability displacement ellipsoids, crystalline water molecule and the atomic numbering [symmetry code: (A) -1 + x, y, z]. H atoms have been omitted for clarity.

Fig. 2. The double-chain framework of (I), formed through hydrogen-bonding (dashed lines) interactions. The atoms of H not involved in hydrogen bonding interactions have been omitted.

catena-Poly[[[bis(triphenylphosphine)silver(I)]- μ -6- aminonaphthalene-1-sulfonato- $\kappa^2 O:N$] monohydrate]

Crystal data

$[Ag(C_{10}H_8NO_3S)(C_{18}H_{15}P)_2] \cdot H_2O$	Z = 2
$M_r = 872.66$	$F_{000} = 896$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.435 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 10.017 (2) Å	Cell parameters from Total reflections
b = 13.696 (3) Å	$\theta = 1.3 - 27.5^{\circ}$
c = 16.792 (3) Å	$\mu = 0.68 \text{ mm}^{-1}$
$\alpha = 69.84 \ (3)^{\circ}$	T = 293 (2) K
$\beta = 81.37 \ (3)^{\circ}$	Block, colourless
$\gamma = 69.09 \ (3)^{\circ}$	$0.29\times0.24\times0.19~mm$
$V = 2019.1 (9) \text{ Å}^3$	

Data collection

Rigaku RAXIS-RAPID diffractometer	8991 independent reflections
Radiation source: fine-focus sealed tube	5525 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.006$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scan	$\theta_{\min} = 1.3^{\circ}$
Absorption correction: multi-scan Abscor (Higashi, 1995)	$h = -13 \rightarrow 12$
$T_{\min} = 0.823, T_{\max} = 0.886$	$k = -16 \rightarrow 17$
9249 measured reflections	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.91	$(\Delta/\sigma)_{\rm max} = 0.001$
8991 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
545 parameters	$\Delta \rho_{min} = -0.71 \text{ e } \text{\AA}^{-3}$

5 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Ag1	0.45345 (3)	0.40427 (2)	0.73248 (2)	0.03644 (10)	
C1	0.7118 (4)	0.6796 (3)	0.6260 (2)	0.0296 (8)	
C2	0.6465 (4)	0.7797 (3)	0.6386 (3)	0.0381 (9)	
H2	0.5473	0.8091	0.6397	0.046*	
C3	0.7281 (4)	0.8386 (3)	0.6499 (3)	0.0472 (11)	
H3	0.6827	0.9063	0.6589	0.057*	
C4	0.8730 (4)	0.7966 (3)	0.6478 (3)	0.0422 (10)	
H4	0.9260	0.8356	0.6562	0.051*	
C5	0.9447 (4)	0.6948 (3)	0.6331 (2)	0.0296 (8)	
C6	1.0960 (4)	0.6543 (3)	0.6255 (2)	0.0341 (9)	
H6	1.1486	0.6959	0.6300	0.041*	
C7	1.1658 (4)	0.5561 (3)	0.6120 (2)	0.0297 (8)	
C8	1.0864 (4)	0.4922 (3)	0.6060 (2)	0.0337 (9)	
H8	1.1338	0.4237	0.5986	0.040*	
C9	0.9410 (4)	0.5301 (3)	0.6111 (2)	0.0327 (9)	
Н9	0.8907	0.4870	0.6064	0.039*	
C10	0.8642 (4)	0.6328 (3)	0.6234 (2)	0.0265 (8)	
C11	0.7677 (4)	0.1897 (3)	0.6750 (2)	0.0340 (9)	
C12	0.8273 (4)	0.2726 (3)	0.6382 (3)	0.0435 (10)	
H12	0.7834	0.3407	0.6467	0.052*	
C13	0.9527 (5)	0.2544 (3)	0.5885 (3)	0.0504 (11)	
H13	0.9924	0.3103	0.5641	0.060*	
C14	1.0176 (4)	0.1542 (3)	0.5755 (3)	0.0479 (11)	
H14	1.1011	0.1422	0.5421	0.057*	
C15	0.9590 (5)	0.0715 (4)	0.6118 (3)	0.0571 (12)	
H15	1.0031	0.0035	0.6031	0.069*	
C16	0.8354 (5)	0.0891 (3)	0.6611 (3)	0.0519 (12)	
H16	0.7967	0.0326	0.6854	0.062*	
C23	0.5068 (4)	0.1420 (3)	0.7161 (3)	0.0358 (9)	
C24	0.4707 (5)	0.0553 (4)	0.7733 (3)	0.0553 (12)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H24	0.5002	0.0290	0.8289	0.066*
C25	0.3910 (5)	0.0066 (4)	0.7495 (3)	0.0632 (14)
H25	0.3660	-0.0513	0.7894	0.076*
C26	0.3486 (5)	0.0425 (4)	0.6680 (4)	0.0645 (15)
H26	0.2956	0.0090	0.6521	0.077*
C27	0.3849 (6)	0.1289 (5)	0.6093 (4)	0.084 (2)
H27	0.3582	0.1531	0.5532	0.101*
C28	0.4616 (6)	0.1793 (4)	0.6344 (3)	0.0667 (16)
H28	0.4828	0.2394	0.5952	0.080*
C29	0.3320 (4)	0.3793 (3)	0.9567 (3)	0.0381 (9)
C30	0.4519 (5)	0.3871 (4)	0.9811 (3)	0.0657 (15)
H30	0.5061	0.4246	0.9408	0.079*
C31	0.4929 (7)	0.3404 (5)	1.0643 (4)	0.0811 (18)
H31	0.5739	0.3470	1.0797	0.097*
C32	0.4151 (7)	0.2843 (4)	1.1243 (3)	0.0765 (17)
H32	0.4425	0.2532	1.1805	0.092*
C33	0.2989 (6)	0.2744 (4)	1.1015 (3)	0.0733 (16)
H33	0.2461	0.2358	1.1420	0.088*
C34	0.2573 (5)	0.3214 (4)	1.0178 (3)	0.0562 (12)
H34	0.1769	0.3134	1.0029	0.067*
C35	0.1219 (4)	0.4181 (3)	0.8402 (2)	0.0354 (9)
C36	0.1444 (5)	0.3180 (3)	0.8278 (3)	0.0544 (12)
H36	0.2374	0.2718	0.8235	0.065*
C37	0.0321 (6)	0.2860 (4)	0.8221 (4)	0.0694 (16)
H37	0.0493	0.2184	0.8145	0.083*
C38	-0.1054 (6)	0.3539 (4)	0.8275 (3)	0.0653 (14)
H38	-0.1816	0.3319	0.8242	0.078*
C39	-0.1309(5)	0.4541 (4)	0.8378 (3)	0.0601 (13)
H39	-0.2243	0.5005	0.8407	0.072*
C40	-0.0173 (4)	0.4862 (3)	0.8440 (3)	0.0459 (10)
H40	-0.0351	0.5544	0.8507	0.055*
C41	0.2170 (4)	0.5942 (3)	0.8473 (2)	0.0347 (9)
C42	0.1378 (5)	0.6255 (3)	0.9147 (3)	0.0503 (11)
H42	0.1126	0.5737	0.9612	0.060*
C43	0.0961 (5)	0.7344 (4)	0.9127 (4)	0.0666 (14)
H43	0.0438	0.7554	0.9581	0.080*
C44	0.1319 (5)	0.8109 (4)	0.8436 (4)	0.0623 (14)
H44	0.1016	0.8842	0.8418	0.075*
C45	0.2114 (5)	0.7804 (3)	0.7776 (3)	0.0545 (12)
H45	0.2355	0.8330	0.7312	0.065*
C46	0.2569 (4)	0.6714 (3)	0.7790 (2)	0.0387 (9)
H46	0.3135	0.6505	0.7346	0.046*
N1	1.3174 (3)	0.5159 (3)	0.6027 (2)	0.0364 (8)
H1A	1.346 (4)	0.478 (3)	0.569 (2)	0.055*
H1B	1.354 (4)	0.568 (3)	0.590 (3)	0.055*
01	0.6144 (3)	0.5166 (2)	0.68881 (18)	0.0472 (8)
O2	0.4561 (3)	0.6885 (2)	0.60277 (19)	0.0459 (7)
O3	0.6540 (3)	0.5791 (2)	0.53629 (19)	0.0511 (8)
P1	0.60724 (10)	0.21524 (7)	0.74155 (7)	0.0341 (2)

P2	0.27970 (10)	0.45162 (8)	0.84655 (6)	0.0332 (2)	
S1	0.60112 (9)	0.61009 (7)	0.61170 (6)	0.0319 (2)	
O1W	0.2596 (5)	0.9004 (4)	0.5468 (4)	0.1303 (19)	
H1C	0.331 (6)	0.833 (3)	0.556 (6)	0.156*	
H1D	0.317 (8)	0.946 (6)	0.525 (6)	0.156*	
C17	0.6689 (4)	0.1318 (3)	0.8487 (3)	0.0400 (10)	
C18	0.8114 (8)	0.0679 (8)	0.8659 (5)	0.060 (3)	0.677 (15)
H18	0.8801	0.0646	0.8221	0.072*	0.677 (15)
C19	0.8487 (10)	0.0088 (10)	0.9501 (6)	0.081 (4)	0.677 (15)
H19	0.9434	-0.0345	0.9621	0.097*	0.677 (15)
C20	0.7492 (7)	0.0132 (5)	1.0154 (3)	0.0781 (17)	
H20	0.7749	-0.0300	1.0708	0.094*	
C21	0.6107 (12)	0.0823 (9)	0.9983 (7)	0.068 (3)	0.677 (15)
H21	0.5432	0.0895	1.0423	0.081*	0.677 (15)
C22	0.5737 (10)	0.1405 (8)	0.9153 (6)	0.052 (2)	0.677 (15)
H22	0.4803	0.1875	0.9041	0.062*	0.677 (15)
C18'	0.733 (3)	0.0155 (15)	0.8742 (13)	0.085 (9)	0.323 (15)
H18'	0.7458	-0.0213	0.8349	0.102*	0.323 (15)
C19'	0.778 (3)	-0.0452 (15)	0.9574 (12)	0.084 (8)	0.323 (15)
H19'	0.8249	-0.1209	0.9734	0.100*	0.323 (15)
C21'	0.677 (3)	0.112 (2)	0.9961 (14)	0.080 (8)	0.323 (15)
H21'	0.6507	0.1467	1.0377	0.095*	0.323 (15)
C22'	0.634 (3)	0.1745 (16)	0.9095 (13)	0.066 (6)	0.323 (15)
H22'	0.5793	0.2485	0.8973	0.079*	0.323 (15)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.03352 (17)	0.03216 (16)	0.03996 (19)	-0.00835 (11)	0.00517 (13)	-0.01209 (13)
C1	0.032 (2)	0.033 (2)	0.027 (2)	-0.0151 (15)	0.0019 (16)	-0.0101 (16)
C2	0.032 (2)	0.038 (2)	0.048 (3)	-0.0095 (16)	0.0017 (18)	-0.0198 (19)
C3	0.047 (3)	0.037 (2)	0.069 (3)	-0.0148 (18)	0.006 (2)	-0.031 (2)
C4	0.045 (2)	0.038 (2)	0.057 (3)	-0.0201 (18)	0.000 (2)	-0.025 (2)
C5	0.033 (2)	0.0323 (19)	0.028 (2)	-0.0161 (15)	-0.0009 (16)	-0.0087 (16)
C6	0.037 (2)	0.039 (2)	0.035 (2)	-0.0211 (16)	-0.0038 (17)	-0.0110 (17)
C7	0.0278 (19)	0.038 (2)	0.0248 (19)	-0.0142 (15)	-0.0039 (16)	-0.0071 (16)
C8	0.032 (2)	0.034 (2)	0.041 (2)	-0.0133 (15)	-0.0031 (17)	-0.0157 (17)
C9	0.033 (2)	0.030 (2)	0.042 (2)	-0.0174 (16)	-0.0005 (17)	-0.0134 (17)
C10	0.0290 (19)	0.0295 (18)	0.0235 (19)	-0.0138 (14)	0.0000 (15)	-0.0074 (15)
C11	0.032 (2)	0.031 (2)	0.039 (2)	-0.0097 (15)	0.0002 (17)	-0.0126 (17)
C12	0.048 (3)	0.032 (2)	0.052 (3)	-0.0156 (18)	0.007 (2)	-0.0160 (19)
C13	0.052 (3)	0.047 (3)	0.053 (3)	-0.026 (2)	0.011 (2)	-0.013 (2)
C14	0.034 (2)	0.054 (3)	0.045 (3)	-0.0109 (19)	0.004 (2)	-0.010 (2)
C15	0.048 (3)	0.049 (3)	0.076 (4)	-0.012 (2)	0.016 (2)	-0.033 (2)
C16	0.049 (3)	0.039 (2)	0.073 (3)	-0.0196 (19)	0.022 (2)	-0.028 (2)
C23	0.033 (2)	0.030 (2)	0.041 (2)	-0.0095 (15)	0.0016 (18)	-0.0087 (17)
C24	0.075 (3)	0.052 (3)	0.044 (3)	-0.034 (2)	-0.005 (2)	-0.006 (2)
C25	0.079 (4)	0.050 (3)	0.065 (3)	-0.040 (3)	-0.006 (3)	-0.003 (2)

C26	0.059 (3)	0.052 (3)	0.088 (4)	-0.028 (2)	-0.021 (3)	-0.010 (3)
C27	0.101 (5)	0.095 (4)	0.066 (4)	-0.058 (4)	-0.039 (3)	0.005 (3)
C28	0.085 (4)	0.065 (3)	0.055 (3)	-0.050 (3)	-0.024 (3)	0.009 (3)
C29	0.037 (2)	0.036 (2)	0.038 (2)	-0.0059 (17)	0.0013 (18)	-0.0143 (18)
C30	0.066 (3)	0.064 (3)	0.066 (3)	-0.030 (3)	-0.024 (3)	-0.001 (3)
C31	0.086 (4)	0.082 (4)	0.077 (4)	-0.024 (3)	-0.044 (4)	-0.014 (3)
C32	0.098 (5)	0.065 (4)	0.043 (3)	0.002 (3)	-0.026 (3)	-0.009 (3)
C33	0.074 (4)	0.077 (4)	0.043 (3)	-0.012 (3)	0.004 (3)	-0.003 (3)
C34	0.041 (3)	0.071 (3)	0.046 (3)	-0.017 (2)	0.003 (2)	-0.007 (2)
C35	0.036 (2)	0.038 (2)	0.032 (2)	-0.0130 (17)	-0.0010 (17)	-0.0092 (17)
C36	0.050 (3)	0.044 (3)	0.072 (3)	-0.013 (2)	-0.009 (2)	-0.021 (2)
C37	0.077 (4)	0.054 (3)	0.090 (4)	-0.032 (3)	-0.022 (3)	-0.020 (3)
C38	0.061 (3)	0.079 (4)	0.068 (4)	-0.043 (3)	-0.013 (3)	-0.012 (3)
C39	0.040 (3)	0.078 (3)	0.065 (3)	-0.020 (2)	-0.002 (2)	-0.025 (3)
C40	0.039 (2)	0.053 (3)	0.048 (3)	-0.019 (2)	0.004 (2)	-0.018 (2)
C41	0.030 (2)	0.040 (2)	0.037 (2)	-0.0123 (16)	0.0011 (17)	-0.0151 (18)
C42	0.055 (3)	0.047 (3)	0.052 (3)	-0.021 (2)	0.021 (2)	-0.024 (2)
C43	0.063 (3)	0.065 (3)	0.088 (4)	-0.027 (3)	0.031 (3)	-0.052 (3)
C44	0.057 (3)	0.042 (3)	0.091 (4)	-0.013 (2)	0.004 (3)	-0.032 (3)
C45	0.067 (3)	0.042 (3)	0.054 (3)	-0.025 (2)	-0.010 (3)	-0.003 (2)
C46	0.043 (2)	0.043 (2)	0.032 (2)	-0.0177 (18)	-0.0018 (18)	-0.0117 (18)
N1	0.0252 (17)	0.047 (2)	0.043 (2)	-0.0135 (14)	-0.0022 (15)	-0.0201 (16)
01	0.0428 (16)	0.0426 (16)	0.0540 (19)	-0.0251 (13)	-0.0090 (14)	0.0022 (14)
O2	0.0262 (14)	0.0445 (16)	0.067 (2)	-0.0110 (12)	-0.0036 (14)	-0.0175 (14)
O3	0.0448 (17)	0.077 (2)	0.0529 (19)	-0.0266 (15)	0.0033 (14)	-0.0416 (16)
P1	0.0335 (5)	0.0277 (5)	0.0383 (6)	-0.0081 (4)	0.0033 (4)	-0.0109 (4)
P2	0.0310 (5)	0.0357 (5)	0.0333 (6)	-0.0111 (4)	0.0036 (4)	-0.0134 (4)
S1	0.0256 (5)	0.0350 (5)	0.0390 (6)	-0.0137 (4)	-0.0006 (4)	-0.0127 (4)
O1W	0.120 (4)	0.109 (4)	0.123 (5)	0.026 (3)	-0.021 (4)	-0.048 (4)
C17	0.047 (3)	0.030 (2)	0.040 (2)	-0.0078 (17)	-0.001 (2)	-0.0128 (18)
C18	0.043 (4)	0.072 (6)	0.050 (5)	-0.002 (4)	-0.006 (3)	-0.016 (4)
C19	0.064 (6)	0.085 (8)	0.060 (6)	0.011 (5)	-0.023 (5)	-0.011 (5)
C20	0.093 (5)	0.071 (4)	0.043 (3)	0.001 (3)	-0.016 (3)	-0.010 (3)
C21	0.068 (7)	0.071 (6)	0.046 (5)	-0.009 (5)	0.000 (5)	-0.012 (4)
C22	0.049 (5)	0.047 (5)	0.046 (5)	-0.006 (4)	0.008 (4)	-0.012 (4)
C17'	0.047 (3)	0.030 (2)	0.040 (2)	-0.0078 (17)	-0.001 (2)	-0.0128 (18)
C18'	0.12 (2)	0.052 (11)	0.075 (13)	0.003 (11)	-0.019 (12)	-0.032 (10)
C19'	0.116 (19)	0.041 (11)	0.061 (12)	0.001 (10)	-0.030 (12)	0.007 (9)
C20'	0.093 (5)	0.071 (4)	0.043 (3)	0.001 (3)	-0.016 (3)	-0.010 (3)
C21'	0.087 (19)	0.098 (18)	0.035 (10)	0.010 (13)	-0.017 (12)	-0.034 (11)
C22'	0.069 (15)	0.039 (11)	0.054 (11)	0.018 (9)	-0.008 (10)	-0.007 (9)

Geometric parameters (Å, °)

Ag1—P1	2.4598 (13)	С33—Н33	0.9300
Ag1—N1 ⁱ	2.460 (3)	C34—H34	0.9300
Ag1—O1	2.478 (3)	C35—C40	1.380 (5)
Ag1—P2	2.4837 (14)	C35—C36	1.391 (5)
C1—C2	1.368 (5)	C35—P2	1.823 (4)

C1—C10	1.430 (5)	C36—C37	1.371 (6)
C1—S1	1.785 (3)	С36—Н36	0.9300
C2—C3	1.406 (5)	C37—C38	1.370 (7)
С2—Н2	0.9300	С37—Н37	0.9300
C3—C4	1.357 (5)	C38—C39	1.371 (7)
С3—Н3	0.9300	С38—Н38	0.9300
C4—C5	1.411 (5)	C39—C40	1.387 (6)
C4—H4	0.9300	С39—Н39	0.9300
C5—C6	1.418 (5)	C40—H40	0.9300
C5—C10	1.421 (5)	C41—C42	1.385 (6)
C6—C7	1.357 (5)	C41—C46	1.385 (5)
С6—Н6	0.9300	C41—P2	1.829 (4)
С7—С8	1.410 (5)	C42—C43	1.387 (6)
C7—N1	1.423 (5)	C42—H42	0.9300
C8—C9	1.361 (5)	C43—C44	1.370 (7)
С8—Н8	0.9300	C43—H43	0.9300
C9—C10	1.412 (5)	C44—C45	1.362 (7)
С9—Н9	0.9300	C44—H44	0.9300
C11—C12	1.384 (5)	C45—C46	1.389 (6)
C11—C16	1.386 (5)	C45—H45	0.9300
C11—P1	1.812 (4)	С46—Н46	0.9300
C12—C13	1.394 (6)	N1—Ag1 ⁱⁱ	2.460 (3)
C12—H12	0.9300	N1—H1A	0.85 (4)
C13—C14	1.371 (6)	N1—H1B	0.87 (4)
C13—H13	0.9300	O1—S1	1.457 (3)
C14—C15	1.375 (6)	O2—S1	1.458 (3)
C14—H14	0.9300	O3—S1	1.440 (3)
C15—C16	1.375 (6)	P1—C17	1.827 (4)
C15—H15	0.9300	O1W—H1C	0.92 (6)
C16—H16	0.9300	O1W—H1D	0.94 (9)
C23—C24	1.370 (5)	C17—C22	1.365 (10)
C23—C28	1.375 (6)	C17—C22'	1.29 (3)
C23—P1	1.829 (4)	C17—C18	1.395 (8)
C24—C25	1.380 (6)	C17—C18'	1.42 (3)
C24—H24	0.9300	C18—C19	1.396 (11)
C25—C26	1.362 (7)	C18—H18	0.9300
C25—H25	0.9300	C19—C20	1.370 (11)
C26—C27	1.378 (7)	C19'—C20	1.40 (3)
С26—Н26	0.9300	С19—Н19	0.9300
C27—C28	1.386 (6)	C20—C21	1.377 (13)
С27—Н27	0.9300	C20—C21'	1.24 (3)
C28—H28	0.9300	С20—Н20	0.9300
C29—C34	1.369 (6)	C21—C22	1.377 (14)
C29—C30	1.375 (6)	C21—H21	0.9300
C29—P2	1.826 (4)	C22—H22	0.9300
C30—C31	1.378 (7)	C18'—C19'	1.40 (2)
С30—Н30	0.9300	C18'—H18'	0.9300
C31—C32	1.368 (8)	С19'—Н19'	0.9300
C31—H31	0.9300	C21'—C22'	1.45 (3)

C32—C33	1.343 (7)	C21'—H21'	0.9300
С32—Н32	0.9300	C22'—H22'	0.9300
C33—C34	1.387 (7)		
P1—Ag1—N1 ⁱ	117.56 (9)	C29—C34—C33	121.4 (5)
P1—Ag1—O1	105.72 (7)	С29—С34—Н34	119.3
N1 ⁱ —Ag1—O1	90.32 (10)	C33—C34—H34	119.3
P1—Ag1—P2	123.55 (5)	C40—C35—C36	118.0 (4)
$N1^{i}$ Ag1 $P2$	103.02 (9)	C40—C35—P2	124.7 (3)
O1—Ag1—P2	111.83 (8)	C36—C35—P2	117.3 (3)
C2—C1—C10	120.9 (3)	C37—C36—C35	121.3 (4)
C2—C1—S1	118.0 (3)	С37—С36—Н36	119.3
C10-C1-S1	121.1 (3)	С35—С36—Н36	119.3
C1—C2—C3	120.6 (3)	C38—C37—C36	119.8 (5)
C1—C2—H2	119.7	С38—С37—Н37	120.1
С3—С2—Н2	119.7	С36—С37—Н37	120.1
C4—C3—C2	120.0 (4)	C37—C38—C39	120.2 (4)
С4—С3—Н3	120.0	С37—С38—Н38	119.9
С2—С3—Н3	120.0	С39—С38—Н38	119.9
C3—C4—C5	121.2 (3)	C38—C39—C40	120.0 (5)
С3—С4—Н4	119.4	С38—С39—Н39	120.0
С5—С4—Н4	119.4	С40—С39—Н39	120.0
C4—C5—C6	121.1 (3)	C35—C40—C39	120.7 (4)
C4—C5—C10	119.6 (3)	C35—C40—H40	119.7
C6—C5—C10	119.2 (3)	С39—С40—Н40	119.7
C7—C6—C5	121.5 (3)	C42—C41—C46	119.7 (4)
С7—С6—Н6	119.3	C42—C41—P2	122.3 (3)
С5—С6—Н6	119.3	C46—C41—P2	117.8 (3)
C6—C7—C8	119.4 (3)	C41—C42—C43	119.8 (4)
C6—C7—N1	121.8 (3)	C41—C42—H42	120.1
C8—C7—N1	118.8 (3)	C43—C42—H42	120.1
C9—C8—C7	120.4 (3)	C44—C43—C42	120.0 (5)
С9—С8—Н8	119.8	C44—C43—H43	120.0
С7—С8—Н8	119.8	C42—C43—H43	120.0
C8—C9—C10	122.0 (3)	C45—C44—C43	120.5 (4)
С8—С9—Н9	119.0	C45—C44—H44	119.8
С10—С9—Н9	119.0	C43—C44—H44	119.8
C9—C10—C5	117.4 (3)	C44—C45—C46	120.6 (4)
C9—C10—C1	125.0 (3)	C44—C45—H45	119.7
	11 / .6 (3)	C46—C45—H45	119.7
C12— $C11$ — $C16$	118.5 (4)	C41 - C46 - C45	119.3 (4)
CI2—CII—PI	119.0 (3)	C41—C46—H46	120.3
CI6—CII—PI	122.4 (3)	C45—C46—H46 	120.3
C11—C12—C13	120.3 (4)	C7— $N1$ — $Ag1$ ^{II}	117.3 (2)
C11—C12—H12	119.8	C7—N1—H1A	113 (3)
C13—C12—H12	119.8	Ag1 ¹¹ —N1—H1A	106 (3)
C14—C13—C12	120.1 (4)	C7—N1—H1B	112 (3)
C14—C13—H13	119.9	Ag1 ⁱⁱ —N1—H1B	95 (3)

C12—C13—H13	119.9	H1A—N1—H1B	113 (4)
C13—C14—C15	119.8 (4)	S1—O1—Ag1	124.79 (15)
C13-C14-H14	120.1	C11—P1—C17	103.95 (18)
C15-C14-H14	120.1	C11—P1—C23	102.81 (18)
C14—C15—C16	120.2 (4)	C17—P1—C23	104.17 (18)
C14—C15—H15	119.9	C11—P1—Ag1	120.93 (12)
C16—C15—H15	119.9	C17—P1—Ag1	112.91 (14)
C15-C16-C11	121.0 (4)	C23—P1—Ag1	110.40 (12)
C15—C16—H16	119.5	C35—P2—C29	103.94 (18)
C11—C16—H16	119.5	C35—P2—C41	106.95 (17)
C24—C23—C28	118.3 (4)	C29—P2—C41	100.11 (18)
C24—C23—P1	124.6 (3)	C35—P2—Ag1	108.18 (14)
C28—C23—P1	117.1 (3)	C29—P2—Ag1	118.33 (13)
C23—C24—C25	120.9 (4)	C41—P2—Ag1	117.98 (13)
C23—C24—H24	119.5	O3—S1—O1	113.63 (18)
C25—C24—H24	119.5	O3—S1—O2	112.24 (18)
C26—C25—C24	120.6 (4)	O1—S1—O2	111.77 (17)
С26—С25—Н25	119.7	O3—S1—C1	106.98 (17)
С24—С25—Н25	119.7	O1—S1—C1	105.24 (16)
C25—C26—C27	119.5 (4)	O2—S1—C1	106.32 (16)
С25—С26—Н26	120.3	H1C—O1W—H1D	99 (4)
С27—С26—Н26	120.3	C22—C17—C18	118.6 (6)
C26—C27—C28	119.5 (5)	C22—C17—P1	118.3 (5)
С26—С27—Н27	120.2	C18—C17—P1	122.8 (4)
С28—С27—Н27	120.2	C17—C18—C19	118.6 (7)
C23—C28—C27	121.1 (4)	C17—C18—H18	120.7
C23—C28—H28	119.4	C19—C18—H18	120.7
C27—C28—H28	119.4	C20-C19-C18	121.5 (7)
C34—C29—C30	117.4 (4)	С20—С19—Н19	119.2
C34—C29—P2	124.8 (3)	С18—С19—Н19	119.2
C30—C29—P2	117.8 (3)	C19—C20—C21	119.4 (7)
C29—C30—C31	121.1 (5)	С19—С20—Н20	120.3
С29—С30—Н30	119.5	C21—C20—H20	120.3
С31—С30—Н30	119.5	C22—C21—C20	119.1 (9)
C32—C31—C30	120.3 (5)	C22—C21—H21	120.5
С32—С31—Н31	119.9	C20—C21—H21	120.5
С30—С31—Н31	119.9	C17—C22—C21	122.5 (8)
C33—C32—C31	119.6 (5)	C17—C22—H22	118.7
С33—С32—Н32	120.2	C21—C22—H22	118.7
C31—C32—H32	120.2	C19'—C18'—H18'	119.3
C32—C33—C34	120.2 (5)	C18'—C19'—H19'	121.5
С32—С33—Н33	119.9	C22'—C21'—H21'	119.6
С34—С33—Н33	119.9	C21'—C22'—H22'	118.6
C10-C1-C2-C3	-0.5 (6)	C12—C11—P1—C23	143.0 (3)
S1—C1—C2—C3	-179.8 (3)	C16—C11—P1—C23	-38.6 (4)
C1—C2—C3—C4	0.5 (7)	C12—C11—P1—Ag1	19.4 (4)
C2—C3—C4—C5	1.0 (7)	C16-C11-P1-Ag1	-162.2 (3)
C3—C4—C5—C6	176.0 (4)	C24—C23—P1—C11	117.8 (4)
C3—C4—C5—C10	-2.3 (6)	C28—C23—P1—C11	-64.2 (4)

C4—C5—C6—C7	179.5 (4)	C24—C23—P1—C17	9.6 (4)
C10—C5—C6—C7	-2.1 (5)	C28—C23—P1—C17	-172.4 (4)
C5—C6—C7—C8	-0.6 (5)	C24—C23—P1—Ag1	-111.9 (4)
C5—C6—C7—N1	178.7 (3)	C28—C23—P1—Ag1	66.1 (4)
C6—C7—C8—C9	2.1 (6)	$N1^{i}$ —Ag1—P1—C11	69.36 (17)
N1—C7—C8—C9	-177.3 (3)	O1—Ag1—P1—C11	-29.46 (16)
C7—C8—C9—C10	-0.7 (6)	P2—Ag1—P1—C11	-160.02 (14)
C8—C9—C10—C5	-2.0(5)	$N1^{i}$ Ag1 $P1$ $C17$	-166.70 (17)
C8—C9—C10—C1	177.4 (4)	Ω_1 Ag_1 P_1 C_17	94.48 (16)
C4—C5—C10—C9	-178.3 (3)	P2—Ag1—P1—C17	-36.08 (15)
C6—C5—C10—C9	34(5)	$N1^{i}$ $\Delta g1$ $P1$ $C23$	-50 55 (17)
C4-C5-C10-C1	2 3 (5)	$\Omega_1 = Ag_1 = P_1 = C_{23}$	-14938(15)
C_{6}	-1761(3)	$P2_Ag1_P1_C23$	80.07 (15)
C_{2} C_{1} C_{10} C_{9}	179 7 (4)	C40-C35-P2-C29	99 5 (4)
S1-C1-C10-C9	-11(5)	$C_{36} = C_{35} = P_{2} = C_{29}$	-82 6 (4)
$C_{2} = C_{1} = C_{10} = C_{5}$	-0.9(5)	C40-C35-P2-C41	-5.8(4)
$S_1 - C_1 - C_1 - C_5$	178 4 (3)	$C_{36} - C_{35} - P_{2} - C_{41}$	172.0(3)
C_{16} C_{11} C_{12} C_{13}	-0.1(6)	C40-C35-P2-Ag1	-1339(3)
P1-C11-C12-C13	1784(3)	$C_{36} = C_{35} = P_2 = A_{g1}$	44.0 (3)
$C_{11} - C_{12} - C_{13} - C_{14}$	0.2(7)	C_{34} C_{29} P_{2} C_{35}	-41(4)
C_{12} C_{13} C_{14} C_{15}	-0.2(7)	C_{30} C_{29} P_{2} C_{35}	178 7 (4)
C13 - C14 - C15 - C16	0.2(7)	C_{34} C_{29} P_{2} C_{41}	106 4 (4)
C14-C15-C16-C11	0.0(7)	C_{30} C_{29} P_{2} C_{41}	-70.8(4)
C_{12} C_{11} C_{16} C_{15}	0.0(7)	C_{34} C_{29} P_{2} A_{g1}	-1240(4)
P1-C11-C16-C15	-1784(4)	C30 - C29 - P2 - Ag1	58 8 (4)
$C_{28} - C_{23} - C_{24} - C_{25}$	01(7)	C42 - C41 - P2 - C35	67 9 (4)
P1-C23-C24-C25	178 1 (4)	C46-C41-P2-C35	-1150(3)
C_{23} C_{24} C_{25} C_{26}	11(8)	C42-C41-P2-C29	-40.2(4)
C_{24} C_{25} C_{26} C_{27}	-0.5(9)	C46—C41—P2—C29	136.9 (3)
C25-C26-C27-C28	-1.2(9)	C42-C41-P2-Ag1	-170.0(3)
C24—C23—C28—C27	-1.9(8)	C46—C41—P2—Ag1	7.1 (3)
P1—C23—C28—C27	180.0 (5)	P1—Ag1—P2—C35	-78.12 (13)
C26—C27—C28—C23	2.5 (9)	$N1^{i}$ $\Delta g1$ $P2$ $C35$	58.20 (15)
$C_{34} - C_{29} - C_{30} - C_{31}$	-14(7)	$\Omega_1 = Ag_1 = P_2 = C_35$	153.87 (14)
$P_2 = C_2 = C_3 $	176.0 (4)	P1 - Ag1 - P2 - C29	39 60 (15)
(29-(30-(31-(32	0.5 (9)	$N1^{i}$ Ag1 D2 C20	175.92 (16)
$C_{2}^{30} = C_{30}^{31} = C_{32}^{32} = C_{33}^{33}$	0.5(9)	N1 - Ag1 - P2 - C29	-88.41(16)
$C_{30} = C_{31} = C_{32} = C_{33}$	-0.5(9)	$P_1 = A_{g1} = P_2 = C_2 $	-66.41(10)
$C_{31} = C_{32} = C_{33} = C_{34}$	-0.3(9)	$r_1 - Ag_1 - r_2 - C_4 I$	62.27(16)
$C_{30} = C_{29} = C_{34} = C_{33}$	1.5 (7)	$N1^{-}$ $Ag1^{-}$ $P2^{-}$ $C41^{-}$	-63.27(10)
P2-C29-C34-C33	-1/5.9(4)	OI - AgI - P2 - C4I	32.40 (15)
$C_{32} = C_{33} = C_{34} = C_{29}$	-0.4(8)	Ag1_01_S1_03	-7/.8(2)
-40	-1.8(/)	Ag1 = 01 = 51 = 02	50.5 (5) 165 40 (10)
P2-C35-C36-C37	-1/9.8(4)	AgI = OI = SI = OI	165.49 (19)
$C_{30} = C_{30} = C_{31} = C_{38}$	0.7(8)	$C_2 = C_1 = S_1 = C_2$	129.4 (3)
$C_{30} = C_{31} = C_{30} = C_{40}$	0.7(8)	$C_{10} - C_{1} - S_{1} - O_{3}$	-49.8 (3)
$C_{2}(-C_{2}) = C_{4}(-C_{2}) = C_{4}(-C_{2})$	-0.9 (8)	$C_{2} = C_{1} = S_{1} = O_{1}$	-109.4(3)
$C_{30} = C_{30} = C_{40} = C_{30}$	1.0 (0)	$C_{10} = C_{1} = S_{1} = C_{2}$	/1.3 (3)
r2-035-040-039	1/9.4 (3)	12 - 1 - 51 - 02	9.5 (4)

C38—C39—C40—C35	-0.3 (7)	C10-C1-S1-O2	-169.9 (3)
C46—C41—C42—C43	1.4 (6)	C11—P1—C17—C22	174.5 (6)
P2-C41-C42-C43	178.4 (3)	C23—P1—C17—C22	-78.1 (6)
C41—C42—C43—C44	0.8 (7)	Ag1—P1—C17—C22	41.7 (6)
C42—C43—C44—C45	-1.7 (8)	C11—P1—C17—C18	0.7 (6)
C43—C44—C45—C46	0.4 (7)	C23—P1—C17—C18	108.1 (6)
C42—C41—C46—C45	-2.7 (6)	Ag1—P1—C17—C18	-132.1 (6)
P2-C41-C46-C45	-179.9 (3)	C22-C17-C18-C19	4.8 (12)
C44—C45—C46—C41	1.8 (6)	P1-C17-C18-C19	178.5 (7)
C6—C7—N1—Ag1 ⁱⁱ	89.1 (4)	C17—C18—C19—C20	-0.5 (16)
C8—C7—N1—Ag1 ⁱⁱ	-91.5 (4)	C18—C19—C20—C21	-3.8 (16)
P1—Ag1—O1—S1	120.0 (2)	C19—C20—C21—C22	3.7 (15)
N1 ⁱ —Ag1—O1—S1	1.2 (2)	C18—C17—C22—C21	-4.9 (12)
P2—Ag1—O1—S1	-103.0 (2)	P1-C17-C22-C21	-179.0 (7)
C12-C11-P1-C17	-108.7 (3)	C20-C21-C22-C17	0.6 (15)
C16—C11—P1—C17	69.7 (4)		
Symmetry codes: (i) $x-1$, y , z ; (ii) $x+1$, y , z .			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1C···O2	0.92 (6)	1.88 (3)	2.789 (5)	166 (8)
N1—H1B····O2 ⁱⁱ	0.87 (4)	2.31 (2)	3.140 (4)	162 (4)
N1—H1A····O3 ⁱⁱⁱ	0.85 (4)	2.17 (2)	2.975 (4)	159 (4)
$\mathbf{C}_{\mathbf{r}} = \mathbf{C}_{\mathbf{r}} + $	- 11			

Symmetry codes: (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1.

Fig. 1

Fig. 2